Computation of the Adjoint Matrix
نویسندگان
چکیده
Abstract. The best method for computing the adjoint matrix of an order n matrix in an arbitrary commutative ring requires O(n log n log log n) operations, provided the complexity of the algorithm for multiplying two matrices is γn + o(n). For a commutative domain – and under the same assumptions – the complexity of the best method is 6γn/(2 − 2) + o(n). In the present work a new method is presented for the computation of the adjoint matrix in a commutative domain. Despite the fact that the number of operations required is now 1.5 times more, than that of the best method, this new method permits a better parallelization of the computational process and may be successfully employed for computations in parallel computational systems.
منابع مشابه
Algebraic adjoint of the polynomials-polynomial matrix multiplication
This paper deals with a result concerning the algebraic dual of the linear mapping defined by the multiplication of polynomial vectors by a given polynomial matrix over a commutative field
متن کاملIdentifying Useful Variables for Vehicle Braking Using the Adjoint Matrix Approach to the Mahalanobis-Taguchi System
The Mahalanobis Taguchi System (MTS) is a diagnosis and forecasting method for multivariate data. Mahalanobis distance (MD) is a measure based on correlations between the variables and different patterns that can be identified and analyzed with respect to a base or reference group. MTS is of interest because of its reported accuracy in forecasting small, correlated data sets. This is the type o...
متن کاملDrinfeld Twist for Quantum Su(2) in the Adjoint Representation
We give a detailed description of the adjoint representation of Drinfeld's twist element, as well as of its coproduct, for suq(2). We also discuss, as applications, the computation of the universal R-matrix in this representation and the problem of symmetrization of identical-particle states with quantum su(2) symmetry.
متن کاملGlobal least squares solution of matrix equation $sum_{j=1}^s A_jX_jB_j = E$
In this paper, an iterative method is proposed for solving matrix equation $sum_{j=1}^s A_jX_jB_j = E$. This method is based on the global least squares (GL-LSQR) method for solving the linear system of equations with the multiple right hand sides. For applying the GL-LSQR algorithm to solve the above matrix equation, a new linear operator, its adjoint and a new inner product are dened. It is p...
متن کاملKaltofen's division-free determinant algorithm differentiated for matrix adjoint computation
Kaltofen has proposed a new approach in Kaltofen (1992) for computing matrix determinants without divisions. The algorithm is based on a baby steps/giant steps construction of Krylov subspaces, and computes the determinant as the constant term of the characteristic polynomial. For matrices over an abstract ring, by the results of Baur and Strassen (1983), the determinant algorithm, actually a s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006